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ABSTRACT 

This technical note discusses some of the more prominent features of an 

Applebaum-Howells type adaptive nulling algorithm when used in conjunction 

with a multiple-beam antenna operating over the earth field of view at syn- 

chronous altitude. A brief discussion of some of the basic properties of the 

multiple-beam antenna configuration used in the study is presented, following 

which some of the characteristics of the conventional LMS power minimization 

algorithm, such as the Applebaum-Howells type, as they apply to the multiple- 

beam antenna are developed.  The relationship of the adapted radiation pat- 

tern to radiation pattern synthesis techniques is discussed.  Next the time 

required for the algorithm to adapt to the steady state solution is considered. 

For the LMS algorithm, the dynamic range of interference power levels to be 

nulled sets the dynamic range of adaption times required by the adaptive 

algorithm. This spread in adaption times is related to the spread in the 

eigenvalues of the interfering-source correlation matrix defined at the 

receive ports. Techniques for compressing this eigenvalue spread, and hence 

increasing the dynamic range of the algorithm, are determined. 

iii 
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Adaptive Nulling with Multiple-Beam Antennas 

I.  Introduction 

This technical note discusses some of the more prominent features of an 

Applebaum-Howells type adaptive nulling algorithm when used in conjunction 

with a multiple-beam antenna (MBA), operating over the earth field of view 

(FOV) at synchronous altitude.  Several variations of the Applebaum-Howells 

algorithm have been implemented in practice.  The particular variation we 

adopt is essentially that discussed by Gabriel.  This scheme allows for the 

incorporation of "beam steering" weights into the control loops, which govern 

the behavior of the adapted radiation pattern.  Incorporation of this scheme 

with a multiple-beam antenna allows for the use of a large aperture in order 

to obtain pattern shaping capabilities over a limited FOV, while keeping the 

number of signal ports at a tractable number. 

A parameter of particular interest in evaluating the usefulness of most 

adaptive nulling algorithms is the time required for adaption to take place. 

One of the basic limitations to the use of a conventional LMS power minimiza- 

tion algorithm when rapid adaption times are desired arises because of the 

slower response time of the adaptive control loops to the weaker interfering 

sources.  For an interfering source having power level P, the loop response 

time varies approximately as 1/P.  Thus the dyanmic range of power levels to 

be nulled sets the dynamic range of adaption times required by the adaptive 

algorithm.  On the other hand, in order to avoid the problem of "noisy loop" 

2 
response, as discussed by Gabriel and Brennan, et^ al., the loops must be 

constrained from responding too rapidly.  This condition is met by requiring 



that the closed-loop bandwidth not exceed a small fraction of the nulling 

bandwidth BW, where we assume white noise interfering signals exist over the 

bandwidth BW. Thus the loops should respond no faster than approximately 

5/BW seconds, and no longer than t , where t is the desired adaption time. 
3 3, 

Hence the dynamic range of power levels which the algorithm can handle is 

limited to approximately BW • (t /5).  Since the dynamic range of interfering 

sources may be as high as, say, 50 dB, this could require operation of the 

loops over a large nulling bandwidth when fast adaption times are desired. 

However, as the nulling bandwidth increases, the interference rejection cap- 

ability inherent in the particular antenna configuration generally decreases, 

and tradeoffs must then be made. 

The spread in adaption times vs interference power level is related to 

the spread in the eigenvalues of the interfering-source correlation matrix 

defined at the receive beam ports.  By compressing this eigenvalue spread, we 

can increase the dynamic range sensitivity of the algorithm.  Three techniques 

for accomplishing this, particularly applicable to multiple-beam antennas, 

will be discussed: 

(a) Pre-weighting at the receive beam ports 

(b) Incorporation of a hard limiter in each 
element feedback loop 

(c) Increasing the number of beams over a 
fixed field of view. 

For the present study, it is assumed that the interfering sources inci- 

dent on the aperture (i.e., referred to 0 dB antenna gain) range from 0 to 

55 dB above the system thermal noise level over the nulling bandwidth.  It 



is desired to "sense" and minimize those sources having power levels in a 

specified dynamic range below the maximum, in minimum adaption time. We 

assume that the residual desired-signal-to-interference ratio after spatial 

adaption, resulting from either the weaker interfering sources or the effects 

of bandwidth, can be further enhanced by some type of post-processing 

(e.g., spread spectrum techniques).  Further, it is assumed that the desired 

signals received by the MBA are at a power level below that which the loops 

can "sense", and hence are minimized by the algorithm only as a consequence 

of their proximity to an interfering source. 

The proposed communications system is designed to serve a multitude of 

users simultaneously, the positions of which are assumed unknown and randomly 

located.  Since the number of users can be as large as 50 or so, the prin- 

cipal mode of operation of the MBA is assumed to be that of earth coverage; 

i.e., the desired radiation pattern of the antenna is designed for minimum 

gain deviation, but maximum gain, over the earth FOV.  The special cases of 

known user positions (maximum signal mode) are handled by steering a maximum 

gain beam to the general vicinity of a known set of users.  Adaption can occur 

in either mode of operation. 

The analysis to follow begins with a brief discussion of some of the 

basic properties of the MBA configuration used in the study.  Some of the 

properties of the conventional LMS power minimization algorithm as they apply 

to the MBA are then developed.  Finally, the eigenvalue compression tech- 

niques are considered. 



II. Antenna Modeling 

Since the quality of the adapted radiation pattern is inherently related 

to the properties of the antenna used in conjunction with the adaptive algor- 

ithm, it is useful to digress and discuss the characteristics of the assumed 

antenna configuration.  The MBA illuminates the earth with a fixed-position 

set of beams which are chosen to cover the desired FOV. The fundamental 

nulling limitations of such an antenna, and optimum beam positioning for null- 

ing, have been discussed in Ref. 3.  For earth-coverage illumination the 

beams are positioned hexagonally, and labeled as shown in Fig. la for seven 

beams and Fig. lb for 19 beams.  The extension to 37 and 61 beams follows 

straightforwardly. The seven beam system is of particular interest since it 

represents the smallest antenna diameter which can be used, and yet illumin- 

ate the FOV in the hexagonal manner shown.  The corresponding seven antenna 

ports yield the minimum number of adaptive loops needed for adaptive control 

of the radiation pattern.  As the number of beams increases, the aperture 

diameter increases, so that the smaller beamwidth obtained allows for full 

3 
coverage over the FOV.  It has been demonstrated that beam positioning is a 

significant factor in obtaining good nulling resolution.  For our antenna 

model, the beams are positioned in a hexagonal array defined by the angular 

positions 

0   = sin"1 i(-\) a  /u 2 + v  *" \ (la) 
n,m        (\TTD'    n    n,m  ; 

<t>   = tan"1 (v  /u ) (lb) n,m n,m n 

where 
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Fig. 1.  7- and 19-MBA beam positioning and labeling for earth-coverage FOV. 



u  = arnr (2a) 
n 

v„ ™ = a  77 (2m-n) (2b) n,m    vi 

and a is the beam placement parameter determining the radial positioning of 

each beam.  The integers n,m range either positive or negative so as to posi- 

tion the beams as desired for 7, 19, 37 or 61 positions.  The inner ring of 

beams is positioned according to 

sin6B .-£«(£)-■£<» (HPBW) (3) 

where 9 denotes the beam position and HPBW the half-power beamwidth.  The 

latter form of Eq. (3) should be used for aperture illuminations other than 

uniform.  For a lens or reflector system, physical realization of 6 would be 
o 

obtained by off-setting an array of feeds from the focal point of the lens or 

reflector, transverse to the focal axis.  In this case 

6B - 6 tan_1(d/F) (4) 

where d is the feed separation, <S the beam deviation factor (see, for example, 

Ref. 4) and F the focal length.  Using (4) in (3), and assuming d << F, we 

obtain 

a . 6 4" (*)• -^-/(F/D) (5) 2 \\J      HPBW ,KC/UJ VJ' 

Equation (5) conveniently expresses a in terms of the feed spacing, in wave- 

lengths, and the F/D ratio of the lens or reflector.  For optimum nulling 

3 
resolution, a £ 1.  However, depending on the desired aperture illumination, 



the physical size of the feed element dictates a minimum allowable (d/A). 

Furthermore, for a fixed D/A, placement of the beams according to a - 1 can 

lead to some loss in gain towards the edge of the FOV. Consequently, 

physical constraints other than nulling resolution often require a choice of 

a > 1, particularly for a small number of beams. Once a is chosen according 

to Eq. (5), any adjacent beams are essentially equally spaced over the narrow 

earth FOV as viewed from synchronous altitude. 

Table 1 below summarizes the particular choices of a  and D/A used in the 

following study. The value of D/A used for a particular set of beams is 

only meant to be representative of a particular design, and was not optimized 

in any way.  For seven beams, a value for a slightly greater than unity was 

chosen in order to improve the coverage area toward the edge of the FOV. 

Table 1 

D/A and a vs Number of Beams 

No. of Beams D/A a 

7 10.7 1.18 

19 16.1 1.0 

37 25.0 1.0 

61 30.3 1.0 

The beams used in the study are the maximum directivity, J.(x)/x beams des- 

cribed in Ref. 3, where J.(x) is the Bessel function of the first kind having 

argument x, and are positioned according to Eqs. (1).  The beam positions do 

not change with frequency, which is indicative of a reflector or lens type 

MBA; hence, the frequency sensitivity of the antenna is somewhat more broad- 

band when compared to an MBA using a frequency sensitive beam-forming network. 



In Sections II and III, we consider in detail the operation of a seven-beam 

system, and defer the larger MBA types to the later sections. 



III.  Basic Properties of the Modified Applebaum-Howells Adaptive Control 
System 

Consider the K-element adaptive control system illustrated in Fig. 2. 

Denote the signals received at the output of each feed-port as E  •••,EL_ 

Since the assumed set of beams characterizing the response to each feed ele- 

ment are functions of frequency, it is more useful for our purposes to inter- 

pret the received signals, E, , in the frequency domain.  The time variation 

of the control weights wi»"*'»wK 
are governed by a set of K first-order dif- 

ferential equations, which can be expressed in the form 

dw/dt + - {I + v    R} • w - - V (6) 
—     T»   o-   —  T —a 

The interpretation of the constants appearing in Eq. (6) has been discussed 

in some detail in Ref. 1. Briefly, T is the open-loop time constant of the 

2 2 
correlator, y ■ k GN, where k is a mixer constant, G the open-loop gain 

and N is the thermal noise level over the bandwidth BW, assumed identical in 

each channel.  Although N is a function of the filter bandwidth BW, the loop 

gain G can be set as desired for a particular bandwidth under consideration. 

Hence \i    can be interpreted as a constant parameter.  R is the cross- 

correlation matrix for the normalized voltages at each receive port, 

s= W (7) 

where the superbar denotes the average over the frequency band BW, 

, BW 
a) + — 
o   2 

( ' ) = ^     I ( • ) du (8) BW f 
BW 

U) — 
o   2 
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Fig. 2. Control mechanism for the kth complex weights. 
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and a) denotes the center-band frequency. Assuming a reactively matched 

receive network, we show in Appendix B that R can be expressed in the form 

(for the case of J narrowband, incoherent interference sources) 

J   

- =S Rj (^f)  4 2"1 ' «Li*/ * £_1 + I + * % f1 ' % ' 2"1      (9) 
j-i A 

2 
where R denotes the ratio of the interference power density (in watts/m ) 

for the jth source incident on the aperture (i.e., referred to 0 dB antenna 

2 
gain) to internal thermal noise density N ; (4TTA/A ) is the maximum antenna 

gain for an aperture of area A; R„ is the real part of the impedance matrix 

Z characterizing the antenna ports upon transmission, normalized to the char- 

acteristic impedance R of the feed transmission lines; i.e., 
o 

R^ = Re(Z)/R . (10) 

D is the matrix I + R^ and c. is a column vector of the beam patterns for each 

isolated port, evaluated at the interference-source coordinates (8.,$.), and 

normalized to 0 dB at the peak of each beam,  e  is the ratio of external to 

internal noise temperature, T /T..  Assuming 1000°K preamps, and T s 300°K, 

then e =0.3.  The constant R. can be written in the form 
o j 

P,G4(A/4irR)
2 

R = -J—3  (11) 
j    N (SBW) K     J 

o 

where P.G. is the effective radiated power (ERP) of the jth interfering source 

2 
assumed spread uniformly over a fixed bandwidth, SBW, and (A/4TTR)  is the 

path loss to the satellite.  It is assumed throughout that SBW > BW. 

11 



In order to evaluate the beam steering weights _V , it is convenient to 

separate the matrix R into an interference matrix M_ and noise matrix M„. 

We define 

£ = Mx + MJJ (12) 

where 

*N - I + 4 % 2"1 • SN • 2"1 <13> 

Then M * 0 in the absence of interfering sources.  In this case Eq. (6) 

reduces to the quiescent condition: 

f *a = [± + »o V   '  So (U) 
o 

where w is a column vector of the desired weights; i.e., that set of weights 

which determine the desired radiation pattern in the absence of interfering 

sources.  Thus the beam steering voltages V offer a direct means of control- 
8 

ling the weights in the absence of interfering sources.  By properly choosing 

the V , quiescent weights w can be determined which result in the desired 

radiation pattern when no interfering sources are present. 

The time evolution of the weights from their initial value w to the 
—o 

steady state value w  can most conveniently be expressed in terms of the ss 

eigenvalues and eigenvectors of R.  We define these according to 

5 ' ^ - sfc ^ (15) 

12 



Solutions  for w(t)   then can be written in the form 

^(t)  =L W  'Ho)   (tk/t)   [l + uosketTk] 

k=l 
(16) 

+ "o L (Tk/x) ^+ ■ * • v [i -e'Tk] 

k=l 

where the K time constants T, are defined by 

x 
Tk = i + M  (i + ak) 

(17) 

and the notation "t" denotes "complex-conjugate, transpose".  The time con- 

stants T, essentially determine the adaption time.  We note that all T. <_ T, 

so that the open-loop integration time sets an upper bound on the convergence 

rate. Thus the K time constants can be ordered according to T-_„.«••,T„.V 
S
 T. 

M1N      MAX 

The eigenvalues s, determining the T. are a strong function of nulling band- 

width BW, interference power level, and interference scenario. We note how- 

ever that although the spread in the eigenvalues s, may be quite large, the 

corresponding spread in the time constants x, can be made considerably smaller 

by reducing the loop gain \i   .  Otherwise said, if u    is reduced sufficiently, 

the loops do not sense the weaker interfering sources.  Hence by properly 

choosing y , a tradeoff can be made between speed of adaption and the dynamic 

range of interfering sources to be minimized.  For this study, assuming inter- 

fering sources incident on the aperture ranging from 0-55 dB above thermal 

noise, the loop gain p is set so that only the larger interfering sources 

13 



are minimized (e.g., those lying between 25 and 55 dB above thermal noise) 

using radiation pattern shaping, but in a rapid time frame, while the remain- 

ing weaker sources are reduced by post-processing after spatial adaption has 

taken place.  The consequences of such a choice for u are discussed in this 
o 

and the following section, and eigenvalue compression techniques for elimin- 

ating some of the problem areas which arise are considered in Section V. 

After adaption has taken place, the steady state solution for the weights 

can be determined from Eq. (6) by setting dw/dt =0.  We obtain 

w  = [I + u MT + u MJ"1 ' V (18) —ss       o =J   o =N     —a 

Since p     <<  1 for the reasons discussed above,  Eq.   (18)   reduces  to 

w      =   [I + u    MT]_1   •  w (19) 
—SS = o =J —o 

In Appendix A we show that this steady state solution is equivalent to mini- 

mizing the total output power of the array, relative to the effective noise 

level, N/p , such that the resulting steady state weights give the best mean 

square approximation to the desired weight w .  In the presence of a single 

user, and with w  chosen to point a maximum directivity beam towards that 

user, this is equivalent to maximizing the received signal/interference 

power ratio as shown by Gabriel, where the desired weights are chosen to 

steer a maximum directivity beam to the single user.  For more than a single 

user, the steady state solution, Eq. (19), is equivalent to minimizing the 

total output power of the array, simultaneously resulting in the best RMS 

approximation to the desired radiation pattern.  This will be demonstrated by 

14 



simulations later in this section, and is further discussed in Appendix A. 

Since the interference power and interference source location cannot be 

controlled, we essentially have three parameters over which to optimize the 

loop performance:  T, y (or loop gain G) and BW.  However these cannot be 

varied independently, and we now enumerate the two constraints which ulti- 

mately determine their values. 

(A)  Minimum Loop Convergence Time 

2 
As developed by Brennan, ^t al.  the actual evolution of the weights 

w(t) in a wideband interference environment is characterized by a sample 

function of a random noise process.  Thus the time evolution of w(t) is not 

characterized by the smooth variation of Eq. (16), but rather a noisy varia- 

tion with Eq. (16) specifying the expected value of the weights.  They have 

shown that the expected value of the normalized output power is given by 

K 

<Po>.v
+-R.v{1 + (A55)^Sk» 

For the adaptive circuitry to realize its full nulling capability, the second 

term in (20) must be kept small relative to unity. Assuming a single large 
K 

interfering source dominates the scenario, we approximate Z s, = s y 
k"l 

The second term can then be approximated as 

u 
s. 

2T•BW    MAX 

This term can be expressed in terms of the minimum time constant T   .  Using 

(17), assuming u sw._, >> 1, we have 
O  MAX 

15 



MIN uo 8MAX (21) 

Thus the second term in (20) is essentially —, and we require 
x 

2TMIN*BW 

 — << 1.  A reasonable value to use is, say, 0.1; we obtain TUT„ • BW - 5. 
2T„T.,'BW MIN 
MiN 

This leads to the first relationship between the three parameters x, BW and 

V 
(BW) ' T = 5 %  SMAX (22) 

(B)  Dynamic Range 

The dynamic range of the interfering sources essentially dominates the 

eigenvalue spread {s,} and hence the spread in time constants.  Using (21), 

we estimate the dynamic range of power levels, DR, which the loops "sense" 

according to 

T 
DR = -«AX z  _[_ . (23) 

TMIN   TMIN    ° ^ 

Equation (23) conveniently expresses the dynamic range of the loop sensitivity 

in terms of the effective loop gain, u   , and maximum interference power level, 

sw.„, which is proportional to (I/N)v..v.. 
MAX MAX 

Equations (22) and (23) can be combined to illustrate the basic tradeoffs 

limiting the operation of the Applebaum-Howell control loop.  Expressing (22) 

in terms of dynamic range, we have 

(BW) • T = 5 (DR) (24) 

Thus to obtain a large dynamic range one either has to increase the bandwidth 

16 



or increase the adaption time T.  (Note, we have implicitly chosen T - desired 

adaption time so that we are assured steady state will be reached in the 

desired time. The alternate possibility of increasing T and y significantly, 
o 

but "freezing" the weights at time tf = desired adaption time, even though 

complete adaption has not taken place is also possible.  In this case Eq. (21) 

implies that T in Eq. (24) should be replaced by t^.)  Since the maximum 

allowable adaption time is essentially fixed at some prescribed value, the 

large dynamic range required must be obtained by increasing the nulling band- 

width BW. As we shall see later via simulation, as a consequence of reducing 

the loop gain y , increasing the bandwidth leads to a larger residual output 

power after adaption, so that increasing the bandwidth does not necessarily 

result in achieving the desired dynamic range. 

Before proceeding to some specific examples, it is instructive to develop 

a simple "rule of thumb" for the dyanmic range required to adequately handle 

a "worse-case" interference scenario. Generally if one desires to minimize, 

by spatial adaption, an interfering source power spread of say, 30 dB, one is 

tempted to conclude that only a 30 dB dynamic range is required. However 

since the residual interference powers after adaption add linearly, a larger 

dynamic range is required when more than one interference source is present. 

Say for example, that we design for a 30 dB dynamic range and three interfer- 

ing sources—IL = 55 dB and R2 - R- - 25 dB.  The larger interfering source 

is reduced to a level either equal to or below the effective noise level, N/y , 

depending on the bandwidth, whereas the smaller interfering sources are only 

slightly unaffected (assuming they are separated more than a beamwidth from 

17 



the large jammer). Since the powers from the two weaker interfering sources 

add linearly after adaption, the resulting interference level at the output 

after adaption is now at least 3 dB above the desired power reduction. An 

extension of this example leads to a simple criteria for the required dynamic 

range (RDR): 

(RDR) = (// large sources) + (R.)„.„ + (# smaller sources) 
j MAX 

- (R ) (25) (YMIN 

where all values are in dB. For six sources, assuming one large interfering 

source and five smaller sources at a level 30 dB below the larger source, 

at least 37 dB of dynamic range is require to adequately handle the worst- 

case scenario.  For three large interfering sources and three smaller sources, 

a 39 dB dynamic range is required. 

Consider now some specific examples to illustrate the basic behavior of 

the adaptive loops upon adaption.  Assume we desire the MBA to adapt in 

1.33 msec, and adapt to a six-source interference scenario having a 34 dB 

dynamic range in power level.  Adaption in the desired time frame will be 

assured if we choose T = 1.33 msec.  Assuming a 10 MHz nulling bandwidth, 

Eq. (24) predicts a usable dynamic range of 34 dB. Although this is slightly 

less than the desired 37-39 dB dynamic range obtained using (25), it is 

pushing the limit of what can be obtained using conventional LMS loops 

adapting in 1.33 msec.  If we further assume a single 55 dB interfering 

source dominates the scenario, then sM „ 
= 85 dB (i.e., approximately 30 dB 

maximum antenna gain at any beam port using D/A * 10.07).  Applying Eq. (23) 

18 



gives v    ■ -51 dB.  For example purposes, we assume the six interfering- 

source scenario given in Table 2 below 

Table 2 

Source R3 
(dB) Location (6 ,4> ) 

Tl 
55 (7.33°, 30°) 

l2 
25 (6°  ,180°) 

X3 
21 (7°   ,270°) 

T4 
21 (7.33°,120°) 

l5 21 (.01° ,  0°) 

lb 
21 (8°  , 70°) 

This represents somewhat of a "worse-case" scenario in that the wide spread 

in power levels takes advantage of the limited dynamic range available to 

the algorithm.  Furthermore, source locations spread out uniformly, together 

with the 10 MHz nulling bandwidth, force the MBA to use all of its seven 

degrees of freedom.  The desired pattern is chosen to be the earth-coverage 

pattern illustrated in Fig. 3.  The contour levels indicate directive gain 

over the earth field of view as viewed from the satellite, accounting for 

the curvature of the earth.  Thus the radial dimension p measured from the 

center of the FOV to a particular position on the earth is not linear with 

pattern angle as measured from the satellite, but varies according to 

tan6 
<Re + h) - /R 2 - p2 e 

(26) 

19 



MAXIMUM LEVEL »22.43 dB 

EARTH FIELD 

Fig. 3.  Earth-coverage radiation pattern for seven beams, D/A - 10.07, 
a - 1.18. 
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where 6 - pattern angle measured relative to the satellite axis, R = radius 

of earth and h = height of the satellite above the surface of the earth.  The 

maximum directive gain available from the 10.07A aperture is 30.5 dB.  The 

contours in Fig. 3 are to be compared to an ideal earth-coverage gain of 

23.2 dB. 

Consider first the case where I., and I~ are present.  In Fig. 4, the 

time history of (I/N) at the output of the sum channel is illustrated for 

each source.  As expected, the loops adapt in the specified time, 1.33 msec. 

We note the rapid adaption to the large interfering source and the relatively 

slow adaption of the weak source, as expected.  Note also the level of adap- 

tion.  Since the weak source was only approximately 4 dB above the effective 

noise before adaption, the corresponding spatial A/J is not very large. 

Otherwise said, I„ appears to the loops as a source of strength \i   (I„/N), and 

is minimized relative to the effective noise level N/p .  This is illustrated 
o 

in Fig. 5, in which we illustrate a directive gain contour plot of the 

adapted pattern at t = 1.33 msec.  The adapted directivity in the direction 

of I1 at the center-band frequency is D(6..,<J>..) ■ -48 dB whereas, for I2, 

D(6_,<f>„) =15.9 dB.  Define I  to denote the total interference power EI +N. 

The ratio of (I /N) before adaption to (I/N) after adaption is 34.3 dB— 

essentially equal to the dynamic range of the system.  We note also that the 

weaker source essentially sets the level of the interference rejection— 

i.e., once a large source is present, many weaker sources then offer the 

greatest limitation to the system.  The adapted level of I is essentially 

determined by the percentage bandwidth (approximately 3% for the assumed 

21 
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frequency). Decreasing the bandwidth would lower the adapted level. Con- 

versely, significantly increasing the bandwidth would increase the adapted 

level, resulting in the larger source dominating the total interference out- 

put power. We also observe in Fig. 5 the earth-coverage pattern constraint 

is adhered to quite nicely over the field of view away from the large inter- 

fering source. 

Figure 6 illustrates the time evolution, w. (t)/w, (0), of each of the 

seven weights. Note in particular weight w_, which essentially turns off 

beam 2 where the large source is located. Weights w. and w_ (I? lies 

between beams 4 and 5) appropriately change after a much longer time.  The 

four remaining weights are only slightly affected. Thus, the MBA serves to 

"decouple" the adaptive loops from each other, as contrasted to the phased 

array having an adaptive loop at each element, for which all weights would 

contribute significantly to the adapted pattern. Hence for a large number 

of beams, the problem of fabricating a large number of identical loops 

becomes less significant with the MBA, and maintaining error tolerances 

between loops should not be as critical as with an adaptive phased array. 

Also observe that the beam steering constraint acts as a first order AGC on 

the weights, i.e., adaption occurs so that |w-w |" is minimum. To illustrate 

this note that the loss in gain, relative to the weights at t - 0, due to 

weight variation is essentially determined by 

K K 
AG=

]£ 
|wk|2/S ivt-o)i2 

k-l k=l 
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Fig. 5. Adapted radiation pattern for the two-interference source scenario 
of Table 2.  D/A - 10.07 and FBW - .0286. 
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AG is plotted as a function of time in Fig. 7.  Observe only 2 dB loss in 

gain is encountered after adaption. 

As an extreme case, consider now the presence of all six interfering 

sources in Table 2. We anticipate this as a worse case for the 34 dB dynamic 

range considered since the loops will respond only slightly to the weaker 

sources, but their powers add linearly after adaption. Thus the interfer- 

ence rejection should degrade by approximately 6 dB when compared to the 

two-source case.  Figure 8 illustrates I/N for each of the six interfering- 

sources.  As expected the weaker sources are only slightly affected, and the 

ratio of total interference/thermal noise ratio before adaption to that after 

adaption has decreased to 27.3 dB, seven dB lower than the two-source case. 

The adapted pattern at t ■ 1.33 msec is illustrated in Fig. 9. Note the deep 

null on I1, whereas only relative minima are formed on the weaker sources. 

The change in gain due to the weight variation, AG, has increased to -4.9 dB. 

Before proceeding to the next section, it is of interest to examine the 

behavior of the adapted weights for zero bandwidth.  In this case, the 

criterion defined by Eq. (22) is violated, but since the output of the cor- 

relator is no longer random (i.e., as BW -*■ 0 the antenna port outputs become 

perfectly correlated), there is no need to insure against random noise driv- 

ing the weights.  The interference/thermal noise ratio for the two-source 

scenario considered previously is plotted in Fig. 10 for this case.  Note in 

particular the much larger reduction in (I-/N) for the larger jammer when 

compared to Fig. 4.  For c.w. sources, the level of reduction of (I../N) 

essentially lies as far below (in dB) the effective noise level as the inter- 
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Fig. 9.  Adapted radiation pattern for the six-source interference scenario 
of Table 2.  D/A = 10.07 and FBW = .0286. 
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ference was above (in dB) the effective noise before adaption.  We define 

the parameter A(I/N), measured in dB, as a measure of the interference sup- 

pression realized by the algorithm: 

A(I/N) 5 [(I/N),]  - [(I/N) 1 (28) 
b dB       a dB 

where the subscript "b" denotes before adaption and "a" after adaption. 

This is indicated in Fig. 10 for each source. Note the change A(I/N) for the 

largest source corresponds to twice the dynamic range when expressed in dB. 

For interference sources in close proximity to each other, the "rule of 

thumb" only holds for the larger source, as the smaller source will be 

reduced an added amount due to the pattern change near the null formed on the 

large source. 

Finally consider the special case of large, c.w. interfering sources 

only—i.e., all sources are assumed to be, say, at least 20 dB above the 

effective noise level.  In this case, the Applebaum-Howell algorithm adapts 

so as to place a "null" on each source, simultaneously prescribing the best 

rms fit to the desired radiation pattern using the available degrees of free- 

dom. Consider a particular example. Figure 11 illustrates the directive 

gain contour over the earth FOV obtained using the adapted weights for two 

large sources placed at (9 - 4°, $ - 30°) and (&2  - 6°, «j»2 - 180°).  Fig- 

ure 12 illustrates the directive gain contour over the earth FOV computed 

using pattern synthesis of an earth-coverage radiation pattern with two con- 

3 
strained nulls at the assumed positions.  The similarities in the two results 

are readily apparent.  Similar results were obtained using the maximum signal 

mode of operation. The reasons for the similarity are further discussed in 

Appendix B. 
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MAXIMUM LEVEL »2734 dB 

Fig. 11.  Adapted radiation pattern for two large sources I and I_ using 
conventional LMS algorithm.  D/A = 10.07. 
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MAXIMUM LEVEL » 27.38dB 18-6-17874 

Fig. 12.  Radiation pattern using pattern synthesis for nulls on I and I, 
D/X - 10.07. X 
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IV. Bandwidth Effects and Signal-Interference Proximity 

Since it is desirable to operate the adaptive loops over as wide a band- 

width as possible, in order to increase the dynamic range, for a fixed adaption 

time, it is useful to examine in detail the effects of increasing bandwidth. 

The bandwidth behavior of the adapted pattern is inherently a function of the 

effective loop gain y .  The effect of increasing bandwidth in a fixed inter- 

ference scenario is manifested by way of the eigenvalues {s,} of the correla- 

tion matrix R defined in Eq. (15). Define s = 1.3 to be the normalized ther- 
= o 

mal noise level (internal plus external) of the system over BW. For bandwidths 

approaching zero and J interfering sources, only J of the {s,} are greater 

than s .  As the bandwidth increases, the remaining eigenvalues gradually be- 

gin to increase above s .  However, the ability of the loops to react to this 

increase in output power level occurs by way of the time constants {T,} , which 

are a function of the product y s . Clearly, from Eq. (17), the T, can only 

change with variations in the s. so long as y s, > 1.  For a small increase in 

bandwidth, additional power occurs at the array output and, since y sT,. << 1, 

is not sensed by the control loops.  Thus the interference suppression capa- 

bility of the array deteriorates with increasing bandwidth until a critical 

threshold is reached when y s  . ~ 1.  To demonstrate this, Fig. 13 illustrates 

the total interference suppression, A(I /N), vs FBW for three single-source 

scenarios having R.. = 55 dB. The particular source locations were taken to 

be at the peak of beam 2, between beams 1, 2 and 7, and between beams 2 and 7 

at the edge of the FOV, as illustrated in the figure.  An earth-coverage con- 

straint was used, but the behavior differs little from the maximum signal 
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Fig. 13.  Interference suppression, A(I /N), vs FBW for three single-inter- 
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constraint. The dynamic range is 34 dB, using the loop parameters selected 

in Section III. Observe that in all three cases, as FBW increases, the inter- 

ference suppression capability initially decreases with increasing bandwidth, 

as discussed above. We have indicated on the curve the transition region 

p 8. "- 1, at which point the array begins to "sense" the increase in inter- 

ference power as the bandwidth widens.  The interference suppression then 

begins to increase. The changes in the eigenvalue spectrum as a function of 

increasing bandwidth for the three interference scenarios considered is illus- 

trated in Fig. 14. A 51 dB effective noise level is used to achieve a dyn- 

amic range of 34 dB. Notice that the region where w s0 has increased to o i 

unity occurs for all scenarios between FBW =» .05 - .08.  Before this transi- 

tion region is reached, the radiation pattern remains essentially unchanged 

from the FBW ■ 0 value. The increase in output interference power for each 

case as FBW increases from 0 is thus due to the bandwidth spread about the 

sharp null developed on the interfering source for 0 bandwidth.  The output 

interference power increases approximately as the square of the bandwidth 

(actually 5.5 dB/octave).  To further illustrate these concepts, we compare 

in Fig. 15 the adapted pattern, evaluated at the interfering source location 

when the source is at a beam maximum, vs frequency for FBW - 0 and FBW - .15, 

the latter case corresponding to u s„ >> 1 so that the array has adapted to 

compensate for the wideband interfering source.  Note that a higher level, 

but wider band, null has been formed on the interfering source. 

It is interesting to compare the results of Fig. 13 for v    = -51 dB to 

the case when the effective loop gain is set to unity.  Figure 16 illustrates 

the interference suppression, A(It/N), vs FBW for this case, using a 34 dB 
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dynamic range and a single interfering source, R ■ 5 dB, located at the peak 

of beam 2. The suppression is essentially flat for all reasonable values of 

FBW. The reason for this becomes evident upon examination of the eigenvalue 

spectrum in Fig. 14. Notice that s» is essentially 6-8 orders of magnitude 

below s. for small bandwidths. For u ■ 1 and an interfering source 35 dB 

above thermal noise as measured at beam port 2, the changes in s„ are well 

below the actual thermal noise of the system. Thus, as the bandwidth increases, 

the interference output power increases, but at a level well below the actual 

noise level of the main channel.  This can be made clearer by comparing the 

output power for the interfering source vs FBW for the two cases \x    ■ -51 dB 

and p - 1, as illustrated in Fig. 17. Note that the variation vs frequency 

is essentially the same for each case; only the amplitude relative to the 

system thermal noise level has changed. For u ■ 1, this amplitude remains 

well below the thermal noise level for all FBWs of practical interest—hence 

the flat characteristics of Fig. 16.  For u ■ -51 dB, the increase in inter- o 

ference power for increasing bandwidth is directly sensed at the output of the 

array; i.e., the output is relative to the effective noise level.  The inter- 

ference power increases approximately as the square of the bandwidth, in 

agreement with the results of Fig. 13.  We conclude that decreasing the loop 

gain allows for the larger interfering sources to be minimized in the desired 

adaption time, but at the sake of forming a "narrowband null" on the larger 

sources, resulting in a somewhat greater residual output power after adaption 

than would occur if the algorithm were free to sense all the eigenvalues aris- 

ing due to the wideband-interference.  Thus the residual output power after 
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adaption increases with increasing bandwidth; hence, a limit exists as to 

how much one can widen the bandwidth to increase the dynamic range. 

Consider now the differences in interference suppression as a function 

of interference location. Referring to Fig. 13, we observe that for FBW = 0, 

suppression of the interfering source degrades as the source moves away from 

a beam maximum to a position between three beams or toward the edge of the FOV. 

However, for FBW > .004, this trend is reversed; i.e., the suppression is 

best for the source located between the three beams and worst for the source 

at the beam peak. The reason for this can be seen as follows:  The minima 

formed on the interfering source is essentially an FBW ■ 0 null. The inter- 

ference output power in this case is proportional to l/s„AV. However Sw»v MAX MAX 

is determined from the output power of the MBA when a maximum directivity 

beam is pointed toward the interference source.  When the interference source 

location is at the peak, of one of the fixed multiple beams, then s^AV is max- MAX • 
2 

imum, given by R * (4nA/A ).  For the other source locations, between fixed 

beams of the MBA, a maximum directivity pointed toward the interference 

source broadens considerably, and the directivity in the direction of the 

interference is somewhat less than the maximum achievable directivity, 

2 
4TTA/A .  Thus s   decreases for interfering sources located away from the 

MAX 

beam peaks, and consequently a less deep null is formed on the interference. 

Since the adapted pattern does not change with bandwidth until FBW =.05, the 

spatially broader null is inherently more broadband and interference sup- 

pression becomes best for interfering sources located away from the main 

beams.  This behavior can be studied qualatatively by examining the ability 

of the MBA to form a maximum directivity beam in any desired direction. 
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Consider for example, the formation of a maximum directivity beam in the 

<$>  =  0 plane as a function of scan angle 6 .  Selected beams are illustrated 
s 

in Fig. 18, using 6 as a parameter.  Note that this plane of scan lies 
8 

between beams 2 and 7. As the scan angle increases, maximum directivity 

available to the desired scan direction is less than the maximum 30.5 dB 

obtained for D/A = 10.07, and the beam broadens considerably.  Furthermore, 

the scanned beam maximum does not occur at the scan angle 6 .  This results 
8 

in poor nulling resolution, as a ring null is then formed when the scanned 

maximum directivity beam is weighted with the desired pattern to form a null. 

The loss in directive gain to the scan direction is illustrated in Fig. 19 

for three planes of scan:  <{> - 0, <f> «15° and <t> "30°.  Results for other 
SS S 

planes may be obtained by making use of the 30° symmetry of the seven-beam 

MBA geometry.  Note the poorest behavior is for the <J> - 0° plane between 

two beams, and as much as 5 dB loss in maximum attainable gain can occur. 

Next, consider interference suppression as a function of bandwidth for 

a two-interfering source scenario:  a large source and a weak source located 

in Fig. 5.  The resulting A(I /N) is plotted in Fig. 20 and compared to the 

single source result.  Note that adding the second weaker source to the single 

large source scenario results in a wideband, but weak suppression dominated 

by the weak source. 

Finally we examine the nulling resolution of the MBA for the maximum 

signal mode of operation.  We consider the two cases FBW - 0 and FBW = .0286. 

Define the desired-signal-to-interference ratio, (S/I ), as the desired signal 

power received divided by the total interference power received where, as 

before, I = El. + N. The ability of the adaptive system to discriminate 
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between an interfering source and a signal-source can be determined from 

changes in (S/I ) before and after adaption.  Define the signal/interference 

discrimination, A(S/I ), according to 

A(S/I ) = (S/IJa  - (S/I,). (29) 
c       C adB      t  bdB 

where the subscript "a" denotes "after adaption" and "b" denotes "before 

adaption".  Thus A(S/I ) accounts not only for the decrease in interference 

power after adaption, but also the decrease (or increase) of signal power 

due to the proximity of the desired signal to the interfering source. 

A(S/I ) is a strong function of signal-interference-source separation. 

Consider for example a desired signal located at 6 =0°, and let a large 

interfering source approach the signal in the (j> - 30° plane. The desired 

pattern is a maximum directivity beam scanned to the signal source, which in 

this case corresponds to excitation of beam 1.  Figure 21 illustrates the 

behavior of A(S/I ) as an interfering source of strength R. ■ 55 dB approaches 

the signal for FBW = 0 and FBW = .0286, plotted vs A0/6 , where A0 is the 

angular interference-signal separation, and 6 the angular distance from the 

main beam to the first null of the maximum directivity radiation pattern. 

For A9 - 6 , the interfering source is in the null of the desired pattern; 

no adaption is required, so A(S/I ) = 0 dB.  For FBW = 0, the signal-to- 

interference discrimination increases rapidly as the interfering source 

leaves the null, and then begins to decrease as the interfering signal 

approaches the signal. The discrimination decreases at approximately 15 dB/ 

octave and gradually approaches 0 dB as 8 -*■  6 .  In this limiting case, no 
J    s 
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discrimination can occur, and the adapted pattern is the same as the quiescent 

pattern.  For FBW = .0286, the discrimination is much poorer.  Peak discrim- 

ination occurs at A9 z  0.69 = 4°.  For the assumed geometry, this corres- 

ponds to the interfering source located between beams 1 and 2 at 6 ■ 4°. 

Note from Fig. 19 that maximum directivity for a beam scanned to 6 "4°, 

<J> =■ 30° is minimum, and hence we anticipate good wide-band null performance 

as discussed previously. Hence the high degree of interference discrimina- 

tion at this point.  For A9/0 < .1, little difference exists between the 

0 bandwidth and FBW = .0286.  This is in agreement with the results of Ref. 5, 

Fig. 10, where it is demonstrated that the effect of a wideband interfering 

source, relative to 0 bandwidth, becomes insignificant as A0 ■* 0.  In Fig. 22 

we illustrate the loss in directivity in the signal direction (relative to 

2 
4TTA/A ) as the interfering source approaches the signal.  The results are 

for FBW = 0, but are not significantly different when FBW - .0286.  Since 

beam positioning according to a = 1.18 was used to model the MBA, it is 

instructive to compare these results to beam positioning corresponding to 

the optimum value for a, 1.0, and also to the optimum results obtained 

assuming an exact replica of a scanned maximum directivity beam. Note from 

Fig. 25 that an improvement of approximately 3.5 dB can be achieved for 

A6/6  : .1 by using optimum beam positioning. 

Placement of the signal at 9 =0 corresponds to a somewhat ideal case, 

so we now examine A(S/I ) vs A9/9 as the interfering source approaches a 

signal located at the edge of the field of view, in between beams 2 and 7 in 

the <j> = 0 plane.  A(S/I ) vs A9/9 is illustrated in Fig. 23 for this case, 
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and the corresponding decrease in directivity in Fig. 24.  Although the basic 

trends are similar to Figs. 21 and 22, the signal-interference discrimination 

2 
has decreased significantly. The loss in directivity relative to 4irA/A has 

also decreased.  The curve is displaced about 5 dB down from that of Fig. 22 

due to 5 dB decrease in directivity available to a signal located at the 

edge of the FOV at <J> =0°, even in the absence of interference.  This is s 

evident as A6/0 ->• 1 in Fig. 22.  The relative improvement in using beam 

placement according to the a = 1 has also decreased, but still yields z  3 dB 

additional gain at A6/6o =0.2. 
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V.  Eigenvalue Compression Techniques 

The results of the previous section have indicated the limitations on 

the dynamic range of power levels which can be minimized using a conventional 

LMS algorithm adapting on the order of a millisecond.  This basic limitation 

arises because of the spread in the eigenvalues of the interfering source 

correlation matrix defined at the receive beam ports, when viewed as a func- 

tion of interfering source power spread.  Clearly, if one could modify the 

correlation matrix by appropriate changes in the algorithm after the receive 

beam ports, so that the modified correlation matrix exhibits a reduced spread 

in eigenvalues, for the same interfering-source scenario, then the algorithm 

could be made to operate over a wider dynamic range.  From Eq. (24), the 

enhanced dynamic range could be used either to decrease the adaption time, 

decrease the nulling bandwidth or increase the dynamic range of interfering- 

source power levels to be minimized.  Three techniques for accomplishing this 

compression which are particularly applicable to multiple-beam antennas will 

now be discussed: 

(a) Pre-weighting at the receive beam ports 

(b) Incorporation of a hard limiter in each 
element feedback loop 

(c) Increasing the number of beams over a 
fixed field of view. 

We consider the first two of these techniques in sequence, while using exam- 

ples for 7, 19, 37 and 61 beams for each case in order to illustrate the 

latter technique. 

55 



A.  Pre-Weighting at Each Receive Beam Port 

One of the particular advantages peculiar to a multiple-beam antenna 

over an array (filled or unfilled) aperture, relative to interference can- 

cellation, arises due to the power discrimination available from beam-port 

to beam-port, which is not present with the phased array. Using this power 

discrimination between output ports, Ricardi, et al.  have demonstrated, for 

a 19-beam system, that one can obtain aminimum of 15 dB interference rejection 

by simply turning off a single beam, or clusters of beams, in which the 

interfering sources are present.  Since a power measurement at the output 

of each beam-port can be made very rapidly (in principle, in approximately 

10/BW seconds, where BW is the bandwidth of the interference channel), the 

possibility of coupling this type of "pre-weighting" with a closed-loop 

adaptive algorithm looks promising.  The rejection of the larger interfer- 

ing signals is then uncoupled from the time adaption of the LMS algorithm, 

and the full dynamic range of the algorithm can be used to null the weaker 

interfering sources.  This type of discrimination is strongly dependent, of 

course, on the degree of beam-beam coupling via the beamwidths of adjacent 

beams, and sidelobes of separated beams, and many possible tradeoff exist 

in choosing an "optimum" set of multiple beams.  It is not the purpose of this 

section to discuss these tradeoffs, but to illustrate that the technique 

itself does yield a significant amount of compression for many cases.  In 

the following we consider two specific sets of multiple beams:  a very ideal 

set of disjoint, uncoupled beams; and a less ideal set of coupled, multiple 

beams corresponding to uniform aperture illumination. The former set can be 
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used to illustrate the best compression one could obtain using the MBA con- 

cept, and the latter offers a still ideal, but more realistic, evaluation of 

the compression attainable using a more practical set of multiple beams. 

1.  Ideal, Disjoint Multiple Beams 

The particular advantages offered by a multiple-beam antenna configura- 

tion relative to pre-weighting as a means of eigenvalue compression can be 

illustrated by a simple example. Consider a set of beams illuminating the 

desired FOV which are spatially disjoint from each other—i.e., each beam's 

radiation pattern is non-zero only over its localized coverage area over the 

FOV, and is zero when evaluated at the coverage area of any of the other 

beams.  The radiation patterns of such an idealized set of beams covering the 

earth FOV might appear as in Fig. 25.  If we define ^k(9) to be the radiation 

pattern of the kth beam, then ty,  (6) - 0 unless 6 occurs over the coverage area 

of the kth beam.  In this case we normalize ty, (6) - 1.  Consider then, two 

interfering signals having power levels I- and I« positioned in beams 1 and 

2, respectively.  The interfering-signal correlation matrix R, assuming zero 

bandwidth signals and normalizing to thermal noise level N is then given by 

Sk.q = (I1/N) W VV + (I2/N) W VV + 6k,q   (30) 

where 6,   =0,k^q;6,   - 1, k * q. Noting the disjoint properties of 
it ,q k ,q 

the beams, then R must take the diagonal from 
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R 

*» 

+ 1 (31) 

Denote the eigenvalues of R by s, , k = 1,•••,!(, as defined in Eq. (15) 
I I 

Then from Eq. (31) , s^^ - -^  + 1, s2" ~ +1, s3 - ,s, - 1, and the eigenvalue 

spread due to the interfering sources is approximately I./I-, assuming 

I1 > I„.  The loop time constants, T-,•••,!_, can be expressed in terms of 

the s, according to: 

T, ■ 
k   1 +. ]i      (1 + s. ) 

o     k 
(32) 

where u     is the effective loop gain.  Hence, assuming s  s >> 1, the dyn- 

amic range of adaption times for the two sources under consideration is given 

by T2/T1 = yij. 

Consider now pre-weighting at each of the beam ports as illustrated in 

Fig. 26.  It is clear that, due to the disjoint properties of the K multiple 

beams, interfering signal I. can be reduced independently by simply control- 

ling A and similarly I„ can be reduced by simply controlling A_.  Assuming 

A and A„ are set as desired, then the correlation matrix R'after pre-weighting 
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takes the form 

R' 

o 

(33) 

and the compressed dynamic range of eigenvalues is given by 

V        lAj2    Ix 

|A2|
2     X2 

(34) 

Clearly A and A„ can be chosen so that T.'/T ' << T«/T.. 

In the general case, pre-weighting occurs at several ports, and a sys- 

tematic scheme for choosing the pre-weights at the kth port must be defined. 

We adopt the following scheme:  Define s   to be the maximum power level 

anticipated out of any of the beam ports in the absence of pre-weighting, 

and A, to be the value of pre-weighting desired at the kth port.  The 

average power measured at the kth port in the absence of pre-weighting is 

R   .  Define A to be the maximum value of pre-weighting allowed and P the 

maximum output power allowed at the output of any of the beam ports after pre- 

weighting.  ThenA0= 
s
MAX/

p
M-  ^ a source appears at the kth beam port at a 

level greater than P , we adjust A^ to bring the level down to P .  If the 
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source appears at a level less than Pu, we do no pre-weighting at that port. 

Thus large jammers appearing at the kth beam ports will be initially reduced 

by A, before adaption begins; smaller jammers will not be affected. Hence 

the spread in eigenvalues at the terminals defined after pre-weighting should 

be smaller than those defined at the terminals before pre-weighting.  This 

modified correlation matrix R' after pre-weighting is then given by 

-R'k,q ■ \ -Y« \ <35) 

where we assume the A, will all be real (i.e., simple attenuators). The 

eigenvalues {s, '} of R', and hence the compressed dyanmic range T '/T,', can 

be controlled as desired by properly choosing P„ (or A).  Using the above 

reasoning, the A^ are given by 

1     ■  Yk<PM 

\ 
(36) 

Vk 
Using this technique, the amount of compression attainable for a fixed amount 

of pre-weighting can be estimated.  For the two-interfering signal ease, the 

spread in eigenvalues before pre-weighting is !,/!«• Assuming I. >> I„, the 

spread in eigenvalues after pre-weighting is A l.ll~.    We define the com- 

pression parameter C for the two-signal case according to 

(Sl/s2)  - (Sl7s2') 
~   -     " dB dB /i-»\ C =  -. -.—r  (37) 

(s,/s,) 
1 l  dB 
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Thus, optimum compression for the above example is given by 

C = «V^WdB (38) 

Thus 100% compression is obtained when (A.)  is equal to the dynamic range 
1 dB 

of power levels of the interfering sources. 

B.  Coupled Multiple Beams 

Clearly, the basis for the above eigenvalue compression scheme depends 

on the degree that one can approximate the ideal set of disjoint multiple 

beams postulated above.  In the practical application, one usually generates 

a set of beams which are spatially orthogonal (i.e., they satisfy the property 

f (0, k i 
J <l>k(e,4>) <t> (e,(J>) sined9d(t> =  I 

L space q (l, k = 

q 
(39) 

all space H (1, k = q 

where 4>,(fl,<j>), k = 1,#,,,K, denotes the beam patterns) or nearly so, but not 

disjoint.  Examples of such beams are the orthogonal set of sin(x-x, )/(x-x^) 

beams for a linear array, where the x. denote the beam positions, and 

J1(x-x, )/(x-x, ) for a two-dimensional aperture, where J,(x) is the first 

order Bessel function.  In this case adjacent beams overlap at a given cross- 

over level, usually between 3 and 4 dB, and beams further apart are coupled 

by the relative sidelobe levels of each beam.  Thus the correlation matrix 

at the receive beam ports is not diagonal, but generally consists of decreas- 

ing off diagonal elements, depending on the actual spread in interference 

power levels.  However, we show that the general trends described above still 

hold, and a significant amount of compression can be obtained for certain 
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interfering-source scenarios. 

In order to illustrate these effects for a more practical MBA beam con- 

figuration, we utilize the basic beam geometry discussed in Section II. 

Before analyzing in detail the degree of eigenvalue compression one can ob- 

tain by pre-weighting at the beam ports, recall the simple two-source example 

treated in Section III, Figs. 3-5, having R- = 55 dB and R„ - 25 dB relative 

to 0 dB antenna gain, as shown in Fig. 3.  The corresponding eigenvalue spread 

for this case is illustrated in Table 3 under the heading "Conventional LMS 

Algorithm".  Note that, for the two assumed sources, there are three signi- 

ficant eigenvalues having a spread s./s» = 40.1 dB.  Since the interfering 

sources are separated by more than a few beamwidths (beamwidth here refers 

to the beamwidth of a maximum gain beam available from the aperture), eigen- 

vector e, corresponding to s. yields the best approximation to a maximum gain 
I 
1       2 beam scanned to the position of I.. , yielding s.. ~  85 dB (i.e., s. = — * 4TTA/A ) 

Note that since I. occurs on a beam peak, the gain in the direction of I. is 

2 
essentially 4TTA/A ~  30.5 dB.  Similarly, e_ corresponds to pointing a 

scanned maximum gain beam in the direction of I_.  However, since I- occurs 

between beams, there is approximately 1.5 dB loss in gain due to scanning 

the beam to I-, which is reflected in a value for s„ somewhat lower than the 

expected 55.5 dB. The third eigenvalue s- arises due to the bandwidth spread 

of the interfering source about the null formed on I.. .  The time adaption of 

I-/N and I2/N is illustrated in Fig. 4 and has been discussed in detail in 

Section III.  Recall that, since the system only senses a 34 dB dynamic range 

in interference power, the third eigenvalue s_ is not sensed, and the adapted 
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Table 3 

Eigenvalue Distribution for Interference Sources in Fig. 3. 
Seven Beams, D/X = 10.7, FBW - .0286 

Eigenvalue Distribution for Two-Jammer Case (10 MHz BW) 

Conventional   20 dB Pre-     Hard- Hard-Limiting + 
Eigenvalue   LMS Algorithm   weighting Limiting Pre-Weighting 

67.6       86.2 72.5 

53.2       68.9 61.2 

44.0       60.1 50.7 

13.0        27.1 19.7 

6.5        22.4 14.5 

1.1       17.4 9.0 

0.9       15.2 7.8 

Sl/s3   (dB) S;L/s3   (dB)       8;L/s3   (dB) 

40.1 23.6 26.2 21.2 

Bx   (dB) 85.5 

82 53.5 

s3 
45.4 

s4 13.1 

S5 
6.8 

S6 1.1 

S7 1.1 

Sl/s3 (dB) 
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level of I1 is quite large.  Similarly, source I- is sensed as a weak source 

relative to u   , and is consequently reduced only slightly. 

Consider now introducing a maximum of 20 dB pre-weighting at each beam 

port according to the scheme outlined in Eq. (36).  Since s.^ - 85 dB, 

PM ■ 65 dB, and hence interfering sources appearing at any beam port at a 

level higher than 65 dB are reduced accordingly. For the case considered, I., 

appears at port 2 at a level of 85 dB, and 20 dB pre-weighting is introduced 

at this port before adaption begins.  No pre-weighting occurs at the other 

ports due to the inherent MBA discrimination between beams (each beam has a 

17-dB first sidelobe level). The corresponding eigenvalue spread using R1 

for this case is tabulated in Table 3 under the head "20 dB maximum pre- 

weighting".  The compression in eigenvalues is clearly evident:  from 40.1 dB 

to 23.6 dB.  In order to fully realize the benefits of this spread, the effec- 

tive loop gain p must be set to correspond to the decreased s'   = 67.6 dB. 

Later we show that the variation in s'   vs interfering source positioning 

is small, and a value of p = -38 dB can be determined from the highest 
o 

attained value of s'  „ when averaged over many source scenarios.  Using this 

value of v   , the corresponding time adaption of I./N and I2/N is illustrated 

in Fig. 27, along with the adapted radiation pattern in Fig. 28. Note that 

at t = 0, the power level of I. has been initially reduced = 23 dB by the 

pre-weighting and the adapted output power has been reduced considerably, as 

is evident by the deeper null formed on I» as compared to the no-pre-weighting 

case.  The 23.6 dB spread in eigenvalues is more than adequately handled by 

the 34 dB dynamic range sensitivity of the loops. 
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Table 2. 
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MAXIMUM LEVEL ' 28 36dB 1J-6-17690 

Fig. 28.  Adapted radiation pattern using 20 dB pre-weighting at each beam 
port.  Two-source interference scenario of Table 2. 
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The results obtained in the above example were perhaps optimistic in the 

sense that only two interfering signals which were widely separated were 

present.  A much more realistic evaluation of the technique would be to con- 

sider a variety of interfering sources, having varying power levels and 

located somewhat randomly over the FOV.  We consider three such cases as 

listed in Table 4 below: 

Table 4 

Case 
Interfering 
Sources 

Power Levels Rj (dB) 

1 6 55, 45, 40, 35, 30, 25 

2 2 55, 25 

3 6 55, 45, 45, 45, 45, 45 

Each scenario is assumed dominated by a single large interfering source hav- 

ing R- = 55 dB.  Case 1 consists of six scenarios spread somewhat uniformly 

in power over a 30 dB range; Case 2 consists of a weak and a strong .source; 

and Case 3 consists of six sources, but with only a 10 dB spread in power 

levels.  For each case, the amount of compression and maximum eigenvalue of 

R' will be averaged over 10 different scenarios generated randomly over the 

FOV, as a function of the pre-weighting parameter A according to the pre- 

weighting scheme defined in Eq. (36).  It is important to ascertain the 

value of s'  __ after pre-weighting so that the effective loop gain can be 
MAX 

properly set. Since variations in s'   are small, the loop gain can then be set 

using the largest value obtained over many random scenarios.  Each case will 

be considered for zero bandwidth, and a 10 MHz bandwidth at 350 MHz.  For 

zero bandwidth, the spread in dominant eigenvalues is given by s^/s., where 
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J is the number of interfering sources.  The remaining eigenvalues are all 

at the thermal noise level and correspond to thermal noise power at the out- 

put when linear combinations of their eigenvectors are used as weights.  For 

the 10 MHz bandwidth, we use ST/S.. . as a measure of the eigenvalue spread, 

accounting for the added degree of freedom used up by the non-zero bandwidth. 

The results for 7, 19, 37 and 61 beams will be considered for each of the 

cases enumerated above. 

1.  Case 1—BW = 10 MHz (2.9%) 

The eigenvalue compression for seven beams is illustrated in Fig. 29, 

where we plot s./s. .. (10 MHz bandwidth) vs the scenario under consideration 

using pre-weighting parameter A as a parameter. Observe that as A0 increases, 

the spread in eigenvalues consistently decreases, although the effect is 

less significant for some scenarios. A saturation point is reached, where 

increasing AQ further does not yield further compression.  At this point, 

increasing A0 results in setting an additional attenuation which is the same 

for each loop, resulting in a loss in interference and noise power output, 

but not changing I/N. This transition region is a function of the beam coup- 

ling and number of interfering sources, and does not occur for the ideal dis- 

joint set of beams. We note however, that for A0« 20 dB, a significant 

amount of compression can be realized even for a seven-beam system and six 

interfering sources operating over a 3% bandwidth. 

Results similar to those illustrated in Fig. 29 were also run for 19 

and 37 beams, and are summarized in Table 5.  In the table, we tabulate the 

average of s'  „ and s,/sT11 over the 10 random scenarios, along with the MAX      1  J+l 
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Fig. 29.  Eigenvalue spread s /sJ+1 vs scenario number for Case 1, Table 4. 
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percent eigenvalue compression C defined in Eq. (8), as a function of pre- 

weighting A . For comparison purposes, the same 10 random scenarios were 

used for each row of the table. As A increases in 10 dB steps, (s'Av) 
o MAX Ay 

gradually decreases until a point is reaches where a further increase in A 

results in a corresponding decrease in (s'.,.v)  by the same amount; no fur- MAX AV 

ther compression is obtained.  This transition occurs quite rapidly for seven 

beams, but larger values of A could be used as the number of beams increases 
o 

or the number of interfering sources decreases.  Note also, that increasing 

the number of beams, for a fixed number of interfering sources, in itself 

yields significant eigenvalue compression. This can be explained as follows: 

For a given interfering source separation, increasing the number of beams 

corresponds to a larger source separation in terms of antenna beamwidths, since the 

antenna diameter is increased to attain a narrower beamwidth in order to cover 

the fixed FOV.  In the limiting case of a very large number of beams, and no 

pre-weighting, a maximum gain beam is formed on each interfering source, and 

is essentially uncoupled from the other sources.  In this limiting case, 

these beams are then the eigenvector beams, and hence, at least for zero 

bandwidth, the eigenvalues then span exactly the range of power levels of 

the interfering sources.  Thus for zero bandwidth, and a 30 dB spread in 

interference source power levels, we expect the spread s-i/s, ■* 30 dB as the 

number of beams increases.  This general trend can be seen in Table 5 for a 

3% bandwidth.  In Table 6, we repeat the results of Table 5 at zero band- 

width, where the above trends are even more evident. For a fixed number of 

beams, pre-weighting adds an additional amount of compression, which averages 
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Table 5 

Eigenvalue Compression vs Maximum Pre-Weighting A for Case 1. 
Six Interfering Sources Rj = 55, 45, 40, 35, 30, 25 dB. 

FBW ■ .0286.  Ten Cumulative Averages. 

No. of Beams A _o 
<
S
'MAX> 

AV 1  J X  AV Compression (%) 

7 Beams 
(D/A - 10.7) 

0 

10 

84.2 

77.8 

dB 51.3 

45.2 

dB 0 

11.9 

20 70.7 40.3 21.4 

30 61.5 39.5 23 

19 Beams 
(D/A = 16.1) 

0 

10 

88.4 

84.3 

35.2 

35.1 

0 

8.8 

20 77.9 30.9 19.7 

30 69.7 28.3 26.5 

* 
37 Beams 
(D/A = 25) 

0 

10 

91.6 35.2 0 

20 82.4 27.2 22.7 

30 75.4 23.6 33.0 

Eight Cumulative Averages 

72 



Table 6 

Pre-Weighting Compression for Case 1—7, 19, 37 and 61 Beams— 
FBW ■ 0.  Ten Cumulative Averages 

No. of Beams A 
<"W AV 1  J+i AV Compre ssion (%) 

7 0 dB 84.2 dB 48.3 dB 0 

10 78.0 42.6 11.8 

20 70.7 38.3 20.7 

30 61.5 36.9 23.6 

19 0 88.4 34.3 0 

10 84.3 31.3 9.6 

20 77.9 28.3 17.5 

30 69.7 26.7 22.2 

37 0 91.8 32.1 0 

10 87.6 28.2 12.2 

20 82.5 24.8 22.8 

30 75.5 22.6 29.5 

61 0 94.2 31.6 0 

10       

20 84.4 23.8 24.7 

30 78.4 22.5 28.2 
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about 25% when referred to the "no pre-weight" result.  If one contrasts, 

for example, a seven-beam system with no pre-weighting to a 19-beam system 

with pre-weighting, a 45% compression can be obtained for a 3% bandwidth. 

Case 1 represents somewhat of a "worst case" for a seven-beam system 

and it is of interest to compare these results to the somewhat less restric- 

tive interference scenario of Case 2 and 3.  Results for these two cases are 

summarized in Tables 7 and 8, respectively, at zero bandwidth.  Since Case 2 

assumes there are only two interfering sources randomly located over the FOV, 

the sources are on the average separated more than a beamwidth, and hence 

the eigenvector beams are nearly uncoupled, leading to (s1/sT)  approaching 
1 J AV 

30 dB even for seven beams.  The degree of compression, C, is larger than 

Case 1, averaging near 40% using A = 30 dB for either 7, 19, 37 or 61 beams. 
o 

In Case 3, we consider six interfering sources, but spread only 10 dB in 

power level, where five sources have a value for R ■ 45 dB.  Hence for 

seven beams a large eigenvalue spread arises when no-pre-weighting exists, 

since some sources will necessarily lie close together (measured in antenna 

beamwidths); for 19-61 beams the eigenvalue spread is much closer to the 

anticipated 10 dB spread.  The amount of compression realized is larger 

where the initial spread before pre-weighting is large, but decreases as the 

initial spread decreases. 

C.  Hard Limiter in Element Feedback Loop 

One means for alleviating the drawbacks of the power response charac- 

teristics of the conventional LMS adaptive algorithm has been to modify each 

adaptive loop by incorporating a hard-limiter in the element branch feeding 
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Table 7 

Eigenvalue Compression vs Pre-Weighting A for Case 2. 
RJ ■ 55, 25 dB.  Ten Cumulative Averages. 

No. of Beams A 

(8W 
AV «•V*'j 

>« Compression (%) 

7 0 84.2 dB 32.4 dB 0 

10 77.6 26.5 18.2 

20 71.3 21.5 33.7 

30 63.1 17.6 45.7 

19 0 88.5 30.4 0 

10 83.0 25.3 17.5 

20 77.6 21.2 30.2 

30 70.5 19.2 36.8 

37 0 91.7 30.5 0 

10 87.9 27.0 11.5 

20 83.1 22.9 24.8 

30 76.7 20.3 33.5 

61 0 

10 

20 

94.2 30.4 0 

84.6 21.2 30.2 

30 79.1 17.9 41.0 
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Table 8 

Eigenvalue Compression vs Pre-Weighting A for Case 3. 
R = 55, 45, 45, 45, 45, 45. Ten Cumulative Averages. 

No. of Beams A 
(SMAX) 

AV 
cy.j) 

AV Compression (%) 

7 0 84.4 dB 35.3 dB 0 

10 78.3 29.6 16 

20 69.8 24.8 29.8 

30 60.3 24.0 32.0 

19 0 88.5 18.9 0 

10 84.3 16.0 10.5 

20 77.3 15.6 17.5 

30 68.3 15.9 15.9 

37 0 91.9 15.4 0 

10 87.9 11.7 24 

20 82.1 12.1 21.4 

30 74.4 12.2 20.8 

61 0 

10 

20 

64.3 14.4 0 

84.3 10.3 28.5 

30 77.8 10.4 27.8 
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back from the beam port to the correlator. The effects of such a modifica- 

tion have been examined in Refs. 1 and 7, where it is concluded that the 

hard-limiter modification does not affect the spread in eigenvalues, but can 

be used to compress the dynamic range of feedback voltages existing in the 

adaptive loop.  However, the basis of these analyses assumes an array an- 

tenna geometry, where the power output of each array element is identical, 

regardless of the number and level of interfering sources.  Thus the effect 

of the hard-limiting is the same for each port, and the correlation matrix 

obtained using hard-limiting is modified only by the hard-limiting output 

constant h; hence all eigenvalues are similarly modified. Thus, although 

the individual values of the eigenvalues are modified, they are all changed 

by the same amount so that no compression occurs. However, use of the hard- 

limiter with an MBA eliminates these drawbacks, and we shall see that, 

theoretically, up to 50% compression can be obtained using this modification. 

The modified correlation matrix, R', obtained using a hard-limiter in 

the element feedback loop has been derived by Brennan, et^ al.  for gaussian, 

ergodic inputs and omni-directionalantenna elements. Assuming narrowband 

interference, R' can be expressed in the form 

R' = —^— R (40) 

where h is the hard-limiter output, R, , the average power out of the kth 

port and R the correlation matrix in the absence of hard-limiting. Equa- 

tion (40) can be shown to be valid for antenna ports which are non-omni- 
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directional—e.g., the MBA.  For the array geometry employing omni-directional 

elements, R.^ - R2 2 
= "' = \  K» 

8° that (40) differs from R by a constant, 

leading to the same eigenvalue spread with and without hard-limiting. How- 

ever, for the MBA, R^      varies from beam port to beam port, so that R' has a 

different eigenvalue spread than R. 

The degree of eigenvalue compression obtained using R'relative to R can 

be estimated using the disjoint set of ideal beams introduced previously. 

For interfering sources I., and I„ appearing in beams 1 and 2, R' takes the 

form, using (40) and (31), 

R' = 

N + 1 

+ 1 (41) 

1 J 

Assuming I /N >> 1 and I-/N >> 1, the eigenvalue spread for R' is given by 

s' /s'  ■ /I../I-.  Hence the compression parameter C defined in Eq. (31) is 

given by 2 
10£og10(I1/I2)   -  10JLog10(I1/I2) 

ioiog10al/i2) 
- .5 (42) 
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Hence the maximum compression available from an ideal set of disjoint multiple 

beams using the hard-limiter modification is 50%, as contrasted to the theo- 

retical limit of 100% for the pre-weighting scheme. 

Consider now the example scenario treated previously and illustrated in 

Fig. 3. The corresponding eigenvalue spread for this case using the hard- 

limiter modification is listed in Table 3, assuming a 3% bandwidth.  34.8% 

compression relative to the conventional LMS algorithm is obtained. The 

time adaption of I./N and I-/N is illustrated in Fig. 30, and the corres- 

ponding adapted contour at 1.33 msec, in Fig. 31.  The "null" formed on the 

weaker interfering source is -13.3 dB, and -46.2 dB on the stronger source. 

These results can be compared to Figs. 4 and 5 obtained using the conventional 

LMS adaption and to Figs. 28 and 29 using the pre-weighting algorithm.  The 

adapted radiation patterns for pre-weighting and hard-limiting are similar 

in form, suggesting that both techniques accomplish essentially the same 

result. 

The average eigenvalue compression obtained by averaging over 10 ran- 

domly chosen scenarios was also computed using the hard-limiter modification 

applied to Cases 1 and 2 defined in Table 4.  The results are tabulated in 

Tables 9 (Case 1, FBW = 0 and .0286) and 10 (Case 2, FBW -0). The basic 

trends are similar to those using the pre-weighting scheme, with the degree 

of compression generally increasing as the number of beams increases. 
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Fig. 30.  Interference-thermal noise ratio vs time using hard-limiter in 
element feedback loop.  Two-source interference scenario of Table 2. 
FBW = .0286. 
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Fig. 31.  Adapted radiation pattern using hard-limiter modification.  Two- 
source scenario of Table 2. 
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Table 9 

Eigenvalue Compression Using Hard-Limiter—Case 1. 
FBW = 0, and FBW - .0286. 

Case 1- 

No. of 

-FBW = 

Beams 

0 

Hard-Limiter 
<8><v 

(s./s.) 
1  J AV Compression (%) 

7 without 84.2 dB 48.3 dB 0 

with 86.4 40.3 16.7 

19 without 88.4 34.3 0 

with 92.3 28.9 15.7 

37 without 91.8 32.1 0 

with 96.4 25.0 22.1 

61 without 94.2 31.6 0 

with 98.6 24.0 24.2 

Case 1- -FBW = .0286 

No. of Beams Hard-Limiter 
(sMiY) MAX AV <V°J+i>AV Compression (%) 

7 without 84.2 51.3 0 

with 86.4 42.9 16.4 

19 without 88.4 38.5 0 

with 92.3 31.5 18.2 

* 
37 

t 
without 91.6 35.2 0 

with 96.3 26.1 25.6 

Eight Cumulative Averages 
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Table 10 

Eigenvalue Compression for Hard-Limiter—Case 2. 
FBW - 0. 

^SMA5p fR  la  \ Compression 
No.   of Beams Hard-Limiter AV K  V   3f C   (Present) 

19 

37 

61 

without 84.2 32.4 

with 86.6 22.2 

without 88.5 30.4 

with 92.1 22.1 

without 91.7 30.5 

with 97.0 22.4 

without 94.2 30.4 

with 99.1 20.3 

31.6 

27.3 

25.8 

33.2 
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VI. Discussion and Conclusions 

Some of the more prominent features of a conventional LMS adaptive null- 

ing algorithm when used in conjunction with a multiple-beam antenna have been 

presented.  When contrasted to a linear or planar array, it has been shown 

that the MBA has several features which tend to enhance the versatility of 

the conventional algorithm.  First, and foremost, the MBA offers power dis- 

crimination from beam port to beam port, which can be used to enhance the 

dynamic range of interference power levels which the algorithm can sense and 

null.  This is accomplished either by pre-weighting at the beam port before 

adaption begins, or hard-limiting in the element feedback loop.  Secondly, as 

the aperture size and number of beams increases, the power discrimination 

between beam ports tends to "decouple" the adaptive loops (i.e., only those 

loops having beams in the vicinity of the interfering sources are significantly 

modified), suggesting that constraints on allowable error tolerances between 

loops might be able to be relaxed somewhat.  Finally, use of an MBA with a set 

of beams fixed in position should lead to a more broadband frequency sensitivity. 

Three techniques for accomplishing eigenvalue compression, particularly 

suitable to multiple-beam antennas, have been discussed.  Using the pre- 

weighting technique, one first samples the output power of each beam port, 

and inserts pre-weighting into those ports where large interference sources 

are present in order to obtain some pattern shaping on the larger sources 

before adaption begins.  The quiescent loop gain can then be adjusted so 

that the full dynamic range of the adaptive processing is made available to 

the weaker interfering sources.  Depending on the number of beams, and the 
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number of interference sources anywhere from 25-50% average compression can 

be obtained, relative to no pre-weighting for a fixed number of beams. 

Increasing the number of beams (with the corresponding increase in aperture 

diameter) leads to a further reduction in eigenvalue spread. Using a hard- 

limiter in the element feedback loop leads to similar results but the com- 

pression is somewhat less than when using pre-weighting.  Use of these com- 

pression techniques allows for a significant enhancement in the allowable dyn- 

amic range of interfernece power levels which the algorithm can handle. 

Alternately, one can use the compression obtained in order to decrease the 

adaption time, or decrease the nulling bandwidth for a fixed dynamic range. 

We have also examined the possibility of combining hard-limiting and 

pre-weighting.  The results for the Case 1, six source scenarios are tabulated 

in Table 11.  Comparing these results with those in Tables 5 and 6, using 

pre-weighting only, indicates that combining the compression techniques does 

not significantly enhance the compression. We conclude that pre-weighting 

alone offers the best technique for compression the eigenvalues, and includ- 

ing a hard-limiter in the element branch feedback loop in order to enhance 

the dynamic range of control-loop feedback voltages slightly enhances the 

compression obtained by pre-weighting. 

85 



Table 11 

Eigenvalue Compression Using Hard-Limiter and 30 dB Pre-Weighting— 
Case 1 - FBW - 0. 

Case 1—FBW = 0 

(sMAX)     (s /s ) 
No. of Beams   Hard-Limiter        AV AV   % dB Compression 

19 

37 

61 

without 84.2 48.3 

with 69.1 36.6 

without 88.4 34.3 

with 75.6 26.7 

without 91.6 32.3 

with 79.7 21.9 

without 94.2 31.6 

with 81.9 21.7 

Case 1—FBW = .0286 

19 

37 

Hard-Limiter 
(3M.J MAX AV iai/B3^ 

without 84.2 51.3 

with 69.1 39.6 

without 88.4 38.5 

with 75.6 28.1 

without 91.6 35.2 

with 79.6 22.8 

24.2 % 

22.1 % 

32.0 % 

31.3 % 

22.8 % 

27.0 % 

36.2 % 
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APPENDIX A 

In this appendix we consider minimizing the total received interference- 

thermal noise ratio at the output of the array, subject to the fixed con- 

straint that the adapted weights w approximate the desired weights as closely 

as possible as possible. Thus we desire to obtain solutions to the minimi- 

zation problem 

w  ' MT ' w 
MIN{I/N} = MIN — =  (Al) 
w w. * «N • w 

subject to the fixed constraint 

|w - w I2 - e (A2) 
—  —o 

where e is an arbitrary constant.  The set of weights w satisfying (Al) and 

(A2) is a strong function of G.  Intuitively we anticipate that if we choose 

e very small, then we essentially require w ■ w and the radiation pattern 

evaluated in the direction of the interference does not change. However, 

as e increases, solutions to (Al) and (A2) gradually result in reducing the 

directivity in the direction of the interfering source; finally, by further 

increasing e, a critical value is reached when the total output power I/N 

is reduced to zero, and the remaining degrees of freedom are used to best 

approximate w to w .  We note that the role played by the parameter e is 

precisely that of the parameter y in the Applebaum-Howell control loop. As 

V    -*■    0 (i.e., either small loop gain or large effective thermal noise), the 
o 

loop does not sense the interfering source and the steady state weights adapt 
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so that w = w . As p increases, the loops begin to sense the larger sources, 

and adapt so as to place minima (but not nulls) in the direction of these 

sources.  If we would increase \i     >> 1 (very large gain in the loops) then 

the adapted weights would essentially place nulls on all the received signals, 

assuming the degrees of freedom are not all used up. 

In order to illustrate this correspondence more clearly, consider the 

variational solution to (Al) and (A2).  We form the variational function 

F{w} = w+ ' MT • w + A w+ • M . w + xJw-w |2 (A3) 
—   —   »I  —   1—   =N  —   2 o 

The minimization criteria is given by V F ■ 0.  We obtain 
w 

Elf! + *IBN + X2i
] ' - = A2^o (A4) 

Solving for w: 

Ü- U^CM^^)]-1 • Wo (A5) 

In comparing Eq. (A5) to Eq. (16), we observe the correspondence — ■*-> \i   . 
A2    ° 

Clearly X    ■*■    0 corresponds to \i     >>  1, in which case the solution to (A4) 

place perfect nulls on the interference irrespective of the desired weights 

w .  For X  >> 1 and I >> N, whiah is the primary case of interest, 
"TO 2 

w = [I + ■!■    Ml"1 • w (A6) 
—    *   A-  =1       —O 

which agrees with the steady state solution, Eq. (19), obtained for the 

Applebaum loop.  In order to precisely evaluate )„ in terms of the constraint 

parameter e, one should substitute (A6) into (A2) and solve for X„.  The 
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result is complicated and it is not felt to be of prime importance to carry 

out the calculation. 

Finally we note the relation to the constraint (A2) to radiation pattern 

shaping. The rms pattern error can be expressed in terms of the excitation 

currents on the feed elements in the form 

Ac - (I - I )+ ' B • (I - I ) (A7) 
—  —o    -   —  —o 

where I is the excitation current, I the desired excitation current and B 
— —o ■ 

the beam coupling matrix.  When B is normalized to unity maximum diagonal 

element we have B = R„.  The excitation currents 1^ on the feed elements are 

related to the weights w according to the results of Appendix B: 

I = [I + R ]-1 • w (A8) —   =  =n     — 

Using   (A8)   in   (A7),  we obtain 

,+ r,     .    ~    -i-l „ r,     .    «    ,-1 
AL -   (w-v^)     •   [I + R^]   *   •   R^   •   [I + RJJ]   "   '   («"JO (A9) 

Since the off-diagonal elements of R^ correspond to the mutual coupling 

between elements, which is generally less than, say 10 dB, the matrix I + R^ 

is nearly diagonal.  Thus the matrix [I + R^]   * §M * tl + SM^   *S even 

more nearly diagonal.  Indeed, for the ideal beams we used considered to 

model the MBA, the off diagonal terms are essentially two orders of magnitude 

down from the diagonal terms.  Thus (A9) is a very good approximation to the 

rms weight constraint (A2), and rms pattern synthesis is essentially equiva- 

lent to rms approximation to the desired weight.  This has also been demon- 

strated via simulations comparing the two techniques. 
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APPENDIX B 

In this appendix we derive Eq. (9) specifying the correlation matrix at 

the receive beam ports including the effects of mutual coupling.  Consider, 

for example, the K-element feed network and reflector antenna structure 

illustrated in Fig. Bla. On reception, the voltages and currents induced at 

terminals of the feed cluster (denoted x-x) are fed into a K-port load Z 

representing the receive circuitry of the array.  For purposes of analysis, 

the multi-terminal network at terminals x-x can be modeled by its K-port 

Thevenin equivalent circuit, illustrated in Fig. Bib.  The voltage genera- 

tors Vni,**',Vn represent the "open circuit" voltages induced at terminals 

x-x when no load is attached.  In vector form, we define 

^0 

voi 
V02 

_v 
(Bl) 

The voltages V  are functions of the electric field incident on the array. 

V„ will be evaluated later.  The impedance matrix Z represents the input 

impedance looking into the terminals x-x when V^ = 0, i.e., when the array 

is transmitting. Thus the matrix Z includes the self- and mutual-coupling of 

complete reflector plus feed cluster.  If we define the voltage V and currents 

_I at the terminals x-x as shown in Fig. Bib (note, the current convention for 
Q 

I is taken flowing out of x-x), then the V and _I are related according to 
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BLOCKAGE 

;:   ::        it   ::        ::   :: 

RECEIVE CIRCUITRY 

FEED  NETWORK 
)    AND REFLECTOR 

STRUCTURE 

(0) 

18-6-17J94 

(b) 

Fig. Bl.  a.  Feed network and reflector struction for a multiple-beam antenna, 
b.  K-port equivalent circuit of Fig. B-l a. 
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X - VQ - Z • I (B2) 

Ideally one desires to attach a load network Z to x-x as shown In Fig. Bla 

so as to extract maximum power from the incident wavefront. This optimum 

9     * 
load can readily be shown to be Z - Z , where the * denotes complex conju- 

— Li * 

gate.  This optimum load is necessarily a K-port coupled network.  From a 

practical viewpoint, since we desire to process the received signal through a 

summing network to a single port, it is generally difficult to achieve the 

* 
optimum matching Z = Z . Rather, one usually resorts to the non-optimum 

matching network illustrated in Fig. B2.  Defining Z = R + jX, we insert a 

reactive matching network -jX fed by K transmission lines of characteristic 

impedance R .  Realization of the receive matching network has been developed 

o 
by Block and is illustrated in Fig. B3.  The reactive cancellation is 

accomplished by introducing reactive cross-coupling -jX,  between each kth 

and qth ports, and inserting a series cancellation -jX, at the kth port and 

-jX  at the qth port.  The characteristic impedance R in each line assumes 

a matched impedance R looking into the sum network from each feed line.  The 

weights w,,•••,w, inserted in the feed lines R are assumed matched to R . 
Ik o o 

Thus for this load, the K-port load impedance as seen from the terminals x-x 

is given by 

ZT = R I - jX (B3) 
=L   o=  J- 

where I denotes the identy matrix.  Using Eqs. (B3) and (B2), and noting 

that at x-x, V = Z  • I_, we can solve for the current 1^ flowing out of the 

terminals x-x and into the transmission line RQ.  We obtain 
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CM *0K 

Z =R + ) X 

REACTIVE  MATCHING-jX 

SUM PORT 

I   I 

18-6-17895 

Fig. B2.  Reactively matched transmission line feed network employing a 
single receive port. 
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18-6-17896 

■JX k,k ■jx q.q 

Fig. B3.  Physical realization of reactive matching network of Fig. B2 between 
ports k and q. 
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I = [R + R I]"1 • V (BA) 
—   =   o=     -o 

Define the voltage E across the transmission line R .  Then E ■ R I. and we 
— o      —   o-* 

obtain 

E - [I + R/R,]"1 * VQ (B5) 

It is convenient to define the normalized resistive matrix R^ 

SN
E
F5 <

B6) 

o 

in which case we obtain 

E - [I + R^]"1 ' VQ (B7) 

The voltages E , •••,EL are, respectively, weighted by the weights w ,•••,w , 

and the average power received at the sum port is given by 

PRec = IT     l^'^'2 " R-   *'  ^   ' * (B8) 

o o 

where w is a column vector of the weights, and "t" denotes "complex-conjugate 

transpose".  We define the super bar notation to denote the average over 

frequency, oo, according to 

u> + BW/2 o 

BW J T-) ~  ^ /    ( . , du 
BW 

wo "T 

where BW is the receiver bandwidth centered about u ■ u .  We note that the o 

total average power delivered to the receive network is given by 

PR = j-    E+'E (B9) 
o   o 
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The average power dissipated in the weights w is given by 

K 

VtZ,MA|: 
k=l 

Hence the average power dissipated in the summing network, P , must be 

O O O ^» 
(Bll) 

o —^ 
k-1 

The correlation matrix M arising from signals incident on the array, as mea- 

sured at the input to the feed line R , is defined according to the average 
o 

received power.  We define M according to 

PRec = ^+'B ' w (B12) 

Comparing Eqs. (B12) and (B8), we obtain 

M - ^EEf (B13) 
o 

If J incoherent signals are incident on the antenna, then we have 

J    

(B14) 
o 

j-l 

where E, is defined as in (7) for each j - 1,**',J.  If J coherent signals 
~j   

are incident on the antenna we have 

j=i    J x 

(B15) 
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The effect on M of adding either internal thermal noise or external omi- 

directional noise will be considered in a later section.  It still remains to 

evaluate the induced voltages V  ,••■,V.  in terms of the signals incident on 

the antenna structure. 

A.  Evaluation of V_ 

Since the voltages V_ depend only on the amplitude and phase of the 

incident electric field, and not on the matching condition, we can determine 

each VQ, by considering the power dissipated in each isolated port under 

matched conditions, and apply reciprocity.  To see this, consider the Thevenin 

voltage-current relationship at the terminals x-x as defined by Eq. (B2). We 

first evaluate VQ .  If we open circuit ports 2,3, •••,!(, then I- - ••• - I - 0 

and Eq. (2) reduces to 

vi - V01 " Vl <B16> 
* 

We now attach a load Z   to port 1 as Illustrated in Fig. B4.  Thus 

V = Z1. I1 and we obtain 

h - voi/2Rn (B17) 

The power dissipated in the load resistor R  is then given by 

lv I2 
P . R IT |2 .  |V0l' 
*1  "ll11!1     4RU (bl8) 

We now apply the reciprocity concept to evaluate V  In terms of the incident 

2 
field.  Consider an incident power flux P G /ATTR , where P.Gj denotes the 

ERP transmitted from a source located at the position (S ,<J> ).  Since port 1 
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):-<+>:  • • •  x 

-ix,< 

18-6-17897 

Fig. B4.  Port 1 terminated in matched load Z  .  Ports 2, 3,'*",K open 
circuited. 
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is matched,   the received power must be given by 

P G 

4TTR 

(B19) 

where Ae denotes the effective area of port 1 with port 2,''#K open cir- 

cuited.  By reciprocity, and since the load Z   is matched for maximum power 

2 
absorption, then (A ) »A D../4TT, where D.. is the directivity of the multiple- 

beam antenna (MBA) excited at port 1 (other ports open circuited).  Compar- 

ing (B19) and (B18) we obtain 

2 
voii2 = 4RnpjGj (k) VW (B20) 

The phase of V  must be that of the incident field seen at port 1 relative 

to some fixed reference point.  Denoting this phase by i|> , we have 

voi ■2 /\T¥77 (k) /W7e * 

Generalizing this result to each of the K receive ports, we have 

V- -  2 /P 
JGJ \4TTR/ 

/R11D1(6J'*J)     e    1 

/RKKDK(ej^J)     6    KJ 

(B22) 

Using (B22), (B7) and either (B14) or (B15) then leads to the proper expres- 

sion for the correlation matrix M in terms of the signals incident on the MBA. 
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It is useful to examine the correlation matrix M under the assumption of 

3 
idealized maximum directivity beams considered previously.  In this case, we 

have 

VW = (TT) WV    k=1»'".K (B23) 

where the set of normalized beams {<J> } , correspond to shifted J.(x)/x beams 

radiated from the multiple beam antenna.  For this set of beams, one can show 

that R - ■ R_„ " •••: R^K and <».■•••■♦_ = 0. Thus a convenient choice for 

R is then R - R,,.  With these assumptions the correlation matrix M takes 
o        o   11 - 

the form 

5-FJ°J(*S)    *?f  «U+ &1"1 •"*• U + S»> 
-1 (B24) 

where we define 

c = 

♦l(8J»*J> 

*2(6J'V 

*k(9J'*J) 

(B25) 

B.  Effects of Internal and External Noise 

In the presence of either internal or external noise, the correlation 

matrix must be appropriately modified.  If internal, uncorrelated white noise 

is inserted at the inputs to each beam port, then the resultant noise power 

at the output, assuming equal noise power, N, in each channel, is given by 

A is the physical area of the reflector. 
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(P )  = w+ • N I • w+ (B26) 
o .  —    =  — 

For external, omni-directional noise we define the incident noise flux/unit 

solid angle as P = P /4TT.  Using (B24), the total received noise power from 

all directions is then given by 

BW 
0) +— 
o  2 

e 
BW in 

V T a11 SpaCC (B27) 

where dQ is the differential solid angle dfi - sined9d<t>, and du> is the differ- 

ential frequency.  If we define the beam coupling matrix B according to 

(B28) B  = 
1 

Air (4 
TTA\ 

all 

/        t 

space 

dn 

we obtain 
i 

.   BW 
*>    + T" o        2 

(Po )     = 
e 

PN 
t 

W    •   i /I 
BW 

D   "      2 

d<4 • w   (B29) 

Assuming B and R^ are only slowly varying functions of frequency, we approx- 

imate 

(PO)   
a PN w+ * 4I5H 

+ I1"1 * 2 ' [£N 
+ I1"1 ' = (B30) 

e 

Combining (B26) and (B30) and (B24) we obtain the total correlation matrix 

for the MBA upon reception for the unmatched received circuit illustrated in 
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Fig. B2: 

A 

+ NI +PN A[5N + i1"1 ' § ' [h + V'1 

-1 

(B31) 

Noting from network theory, assuming a lossless load, the radiated power on 

transmission must be proportional to I • R^ ' _I .  Using field theory, we 

also obtain from Poynting's theorem that the radiated power is proportional to 

I  • B ' I_. Hence we can take R^ = Normalized B of Eq. (B28) .  Dividing 

through by N leads to the normalized R given by Eq. (9) of the text. 
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